trading-quant/datasource/crypto.py
2024-06-07 22:34:41 +08:00

88 lines
2.8 KiB
Python

import requests
from binance.spot import Spot
import pandas as pd
api_key = "HCpeel8g6fsTK2630b7BvGBcS09Z3qfXkLVcAY2JkpaiMm1J6DWRvoQZBQlElDJg"
api_secret= "TySs6onlHOTrGzV8fMdDxLKTWWYnQ4rCHVAmjrcHby17acKflmo7xVTWVsbqtxe7"
client = Spot(api_key, api_secret)
# 获取市值前top的币种
def _get_top_coins_by_market_cap(top):
coingecko_url = "https://api.coingecko.com/api/v3/coins/markets"
params = {
'vs_currency': 'usd',
'order': 'market_cap_desc',
'per_page': top,
'page': 1
}
response = requests.get(coingecko_url, params=params)
coins = response.json()
return coins
# 获取Binance上的USDT交易对信息
def _get_binance_usdt_pairs():
url = "https://api.binance.com/api/v3/exchangeInfo"
response = requests.get(url)
data = response.json()
usdt_pairs = [symbol['symbol'] for symbol in data['symbols'] if (symbol['quoteAsset'] == 'USDT' and symbol['status'] == 'TRADING')]
return usdt_pairs
def get_top_binance_usdt_pairs(top):
# 获取市值前10的币种
top_coins = _get_top_coins_by_market_cap(top)
# 获取Binance上的USDT交易对
usdt_pairs = _get_binance_usdt_pairs()
# 筛选出前10币种中与USDT有交易对的币种
top_pairs = []
for coin in top_coins:
coin_symbol = coin['symbol'].upper()
pair = f"{coin_symbol}USDT"
if pair in usdt_pairs:
top_pairs.append(pair)
return top_pairs
## 获取所有现货交易对
def get_symbols():
data = client.exchange_info()["symbols"]
# 创建DataFrame
columns = ['symbol', 'status', 'baseAsset', 'quoteAsset']
df = pd.DataFrame(data, columns=columns)
# 过滤出在架交易对
df_in_trade = df[df['status'] == 'TRADING']
df_in_USDT = df_in_trade[df_in_trade['quoteAsset'] == 'USDT']
return df_in_USDT['symbol']
## 根据交易对和周期获取数据集
def get_klines(symbol,interval):
# 获取 k 线数据
data = client.klines(symbol, interval,limit=500)
# 将数据转换为DataFrame
columns = ['timestamp', 'open', 'high', 'low', 'close', 'volume',
'close_time', 'quote_asset_volume', 'number_of_trades',
'taker_buy_base_asset_volume', 'taker_buy_quote_asset_volume', 'ignore']
df = pd.DataFrame(data, columns=columns)
# 转化成 float
df['open'] = df['open'].astype('float64')
df['high'] = df['high'].astype('float64')
df['low'] = df['low'].astype('float64')
df['close'] = df['close'].astype('float64')
df['volume'] = df['volume'].astype('float64')
# 将时间戳转换为日期时间格式
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms', utc=True).map(lambda x: x.tz_convert('Asia/Shanghai'))
df['close_time'] = pd.to_datetime(df['close_time'], unit='ms', utc=True).map(lambda x: x.tz_convert('Asia/Shanghai'))
return df