This commit is contained in:
aaron 2025-05-01 21:02:09 +08:00
parent b573ac1dfe
commit 66db75127c
7 changed files with 341 additions and 6 deletions

327
cryptoai/api/qwen_api.py Normal file
View File

@ -0,0 +1,327 @@
import os
import json
import requests
from typing import Dict, Any, List, Optional, Tuple
import time
import logging
import datetime
from cryptoai.utils.config_loader import ConfigLoader
# 配置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("qwen_token_usage.log"),
logging.StreamHandler()
]
)
class QwenAPI:
"""Qwen API交互类用于进行大语言模型调用"""
def __init__(self):
"""
初始化Qwen API
Args:
api_key: Qwen API密钥
model: 使用的模型名称
"""
config_loader = ConfigLoader()
self.qwen_config = config_loader.get_qwen_config()
self.api_key = self.qwen_config['api_key']
self.model = self.qwen_config['model']
self.base_url = "https://dashscope.aliyuncs.com/api/v1"
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}"
}
# Token 使用统计
self.token_usage = {
"total_prompt_tokens": 0,
"total_completion_tokens": 0,
"total_tokens": 0,
"calls": []
}
# 创建日志记录器
self.logger = logging.getLogger("QwenAPI")
def streaming_call(self, user_prompt: str):
"""
流式调用Qwen API
"""
system_prompt = "你是一个专业的区块链分析高手"
try:
endpoint = f"{self.base_url}/services/aigc/text-generation/generation"
payload = {
"model": self.model,
"input": {
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
},
"parameters": {
"stream": True
}
}
response = requests.post(endpoint, headers=self.headers, json=payload, stream=True)
response.raise_for_status()
for line in response.iter_lines():
if line:
# 解码二进制数据为字符串
line = line.decode('utf-8')
# 跳过空行和心跳检查行
if not line or line == "data: [DONE]":
continue
# 移除 "data: " 前缀
if line.startswith("data: "):
line = line[6:]
try:
# 解析JSON数据
data = json.loads(line)
# 提取content内容
if (data.get("output") and
data["output"].get("choices") and
len(data["output"]["choices"]) > 0 and
data["output"]["choices"][0].get("message") and
data["output"]["choices"][0]["message"].get("content")):
content = data["output"]["choices"][0]["message"]["content"]
yield content
except json.JSONDecodeError as e:
self.logger.error(f"解析JSON时出错: {e}, 原始数据: {line}")
continue
except Exception as e:
self.logger.error(f"流式调用Qwen API时出错: {e}")
raise e
def call_model(self, prompt: str, system_prompt: str = None, task_type: str = "未知任务", symbol: str = "未知", temperature: float = 0.2, max_tokens: int = 2000) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""
调用Qwen大语言模型
Args:
prompt: 用户提示词
system_prompt: 系统提示词如果为None则使用默认值
task_type: 任务类型用于记录
symbol: 交易对符号用于记录
temperature: 采样温度控制输出随机性
max_tokens: 最大生成token数
Returns:
(API响应, token使用信息)
"""
if system_prompt is None:
system_prompt = "你是一个专业的加密货币分析助手擅长分析市场趋势、预测价格走向和提供交易建议。请始终使用中文回复并确保输出格式规范的JSON。"
usage_info = {}
try:
endpoint = f"{self.base_url}/services/aigc/text-generation/generation"
payload = {
"model": self.model,
"input": {
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
]
},
"parameters": {
"temperature": temperature,
"max_tokens": max_tokens
}
}
start_time = time.time()
response = requests.post(endpoint, headers=self.headers, json=payload)
response.raise_for_status()
response_data = response.json()
end_time = time.time()
# 记录token使用情况
if 'usage' in response_data:
prompt_tokens = response_data['usage'].get('input_tokens', 0)
completion_tokens = response_data['usage'].get('output_tokens', 0)
total_tokens = prompt_tokens + completion_tokens
usage_info = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens,
"task_type": task_type,
"symbol": symbol,
"model": self.model,
"timestamp": datetime.datetime.now().isoformat(),
"duration_seconds": round(end_time - start_time, 2)
}
# 更新总计
self.token_usage["total_prompt_tokens"] += prompt_tokens
self.token_usage["total_completion_tokens"] += completion_tokens
self.token_usage["total_tokens"] += total_tokens
self.token_usage["calls"].append(usage_info)
# 记录到日志
self.logger.info(
f"Qwen API调用 - 任务: {task_type}, 符号: {symbol}, "
f"输入tokens: {prompt_tokens}, 输出tokens: {completion_tokens}, "
f"总tokens: {total_tokens}, 耗时: {round(end_time - start_time, 2)}"
)
return response_data, usage_info
except Exception as e:
error_msg = f"调用Qwen API时出错: {e}"
self.logger.error(error_msg)
return {}, usage_info
def extract_text_from_response(self, response: Dict[str, Any]) -> str:
"""
从响应中提取文本数据
"""
try:
if 'output' in response and 'choices' in response['output'] and len(response['output']['choices']) > 0:
content = response['output']['choices'][0]['message']['content']
# 如果内容以```markdown开头则去掉```
if content.startswith('```markdown'):
content = content[len('```markdown'):]
# 如果内容以```结尾,则去掉```
if content.endswith('```'):
content = content[:-len('```')]
return content
else:
return {"error": "无法从响应中提取文本", "raw_content": response}
except Exception as e:
return {"error": str(e), "raw_content": response}
def extract_json_from_response(self, response: Dict[str, Any]) -> Dict[str, Any]:
"""
从响应中提取JSON数据
Args:
response: API响应
Returns:
提取的JSON数据
"""
try:
if 'output' in response and 'choices' in response['output'] and len(response['output']['choices']) > 0:
content = response['output']['choices'][0]['message']['content']
# 尝试从响应中提取JSON
start_idx = content.find('{')
end_idx = content.rfind('}') + 1
if start_idx != -1 and end_idx != -1:
json_str = content[start_idx:end_idx]
return json.loads(json_str)
return {"error": "无法从响应中提取JSON", "raw_content": content}
return {"error": "API响应格式不正确", "raw_response": response}
except Exception as e:
error_msg = f"解析响应时出错: {e}"
self.logger.error(error_msg)
return {"error": str(e), "raw_response": response}
def get_token_usage_stats(self) -> Dict[str, Any]:
"""
获取Token使用统计信息
Returns:
包含使用统计的字典
"""
return {
"total_prompt_tokens": self.token_usage["total_prompt_tokens"],
"total_completion_tokens": self.token_usage["total_completion_tokens"],
"total_tokens": self.token_usage["total_tokens"],
"total_calls": len(self.token_usage["calls"]),
"average_tokens_per_call": self.token_usage["total_tokens"] / len(self.token_usage["calls"]) if self.token_usage["calls"] else 0,
"detailed_calls": self.token_usage["calls"][-10:] # 仅返回最近10次调用详情
}
def export_token_usage(self, file_path: str = None, format: str = "json") -> str:
"""
导出Token使用数据到文件
Args:
file_path: 文件路径如果为None则自动生成
format: 导出格式支持'json''csv'
Returns:
导出文件的路径
"""
if file_path is None:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
file_path = f"qwen_token_usage_{timestamp}.{format}"
try:
if format.lower() == "json":
with open(file_path, 'w', encoding='utf-8') as f:
json.dump(self.token_usage, f, indent=2, ensure_ascii=False)
elif format.lower() == "csv":
import csv
with open(file_path, 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
# 写入表头
writer.writerow([
"timestamp", "task_type", "symbol", "model",
"prompt_tokens", "completion_tokens", "total_tokens",
"duration_seconds"
])
# 写入数据
for call in self.token_usage["calls"]:
writer.writerow([
call.get("timestamp", ""),
call.get("task_type", ""),
call.get("symbol", ""),
call.get("model", ""),
call.get("prompt_tokens", 0),
call.get("completion_tokens", 0),
call.get("total_tokens", 0),
call.get("duration_seconds", 0)
])
# 写入总计
writer.writerow([])
writer.writerow([
f"总计 (调用次数: {len(self.token_usage['calls'])})",
"", "", "",
self.token_usage["total_prompt_tokens"],
self.token_usage["total_completion_tokens"],
self.token_usage["total_tokens"],
""
])
else:
raise ValueError(f"不支持的格式: {format},仅支持 'json''csv'")
self.logger.info(f"Token使用数据已导出到: {file_path}")
return file_path
except Exception as e:
error_msg = f"导出Token使用数据时出错: {e}"
self.logger.error(error_msg)
return ""

View File

@ -16,6 +16,11 @@ deepseek:
api_key: "sk-9f6b56f08796435d988cf202e37f6ee3"
model: "deepseek-chat" # 使用的模型
# Qwen API设置
qwen:
api_key: "sk-caa199589f1c451aaac471fad2986e28"
model: "qwen-max" # 使用的模型
# AllTick API设置用于获取黄金数据
alltick:
api_key: "ee66d8e2868fd988fffacec40d078df8-c-app"

View File

@ -24,7 +24,6 @@ def main():
# return
print("定时程序启动")
CryptoAgent().start_agent()
# 设置 08:00, 20:00 运行一次
schedule.every().day.at("00:00").do(CryptoAgent().start_agent)
schedule.every().day.at("08:00").do(CryptoAgent().start_agent)
@ -32,11 +31,11 @@ def main():
schedule.every().day.at("16:00").do(CryptoAgent().start_agent)
schedule.every().day.at("20:00").do(CryptoAgent().start_agent)
schedule.every().day.at("00:00").do(GoldAgent().start_agent)
schedule.every().day.at("08:00").do(GoldAgent().start_agent)
schedule.every().day.at("12:00").do(GoldAgent().start_agent)
schedule.every().day.at("16:00").do(GoldAgent().start_agent)
schedule.every().day.at("20:00").do(GoldAgent().start_agent)
# schedule.every().day.at("00:00").do(GoldAgent().start_agent)
# schedule.every().day.at("08:00").do(GoldAgent().start_agent)
# schedule.every().day.at("12:00").do(GoldAgent().start_agent)
# schedule.every().day.at("16:00").do(GoldAgent().start_agent)
# schedule.every().day.at("20:00").do(GoldAgent().start_agent)
while True:
schedule.run_pending()

View File

@ -72,6 +72,10 @@ class ConfigLoader:
"""获取DeepSeek配置"""
return self.get_config('deepseek')
def get_qwen_config(self) -> Dict[str, Any]:
"""获取Qwen配置"""
return self.get_config('qwen')
def get_gold_config(self) -> Dict[str, Any]:
"""获取黄金配置"""
return self.get_config('gold')