import os import json import requests from typing import Dict, Any, List, Optional, Tuple import time import logging import datetime from cryptoai.utils.config_loader import ConfigLoader # 配置日志 logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler("deepseek_token_usage.log"), logging.StreamHandler() ] ) class DeepSeekAPI: """DeepSeek API交互类,用于进行大语言模型调用""" def __init__(self): """ 初始化DeepSeek API Args: api_key: DeepSeek API密钥 model: 使用的模型名称 """ config_loader = ConfigLoader() self.deepseek_config = config_loader.get_deepseek_config() self.api_key = self.deepseek_config['api_key'] self.model = self.deepseek_config['model'] self.base_url = "https://api.deepseek.com/v1" self.headers = { "Content-Type": "application/json", "Authorization": f"Bearer {self.api_key}" } # Token 使用统计 self.token_usage = { "total_prompt_tokens": 0, "total_completion_tokens": 0, "total_tokens": 0, "calls": [] } # 创建日志记录器 self.logger = logging.getLogger("DeepSeekAPI") def streaming_call(self, user_prompt: str): """ 流式调用DeepSeek API """ system_prompt = "你是一个专业的区块链分析高手" try: endpoint = f"{self.base_url}/chat/completions" payload = { "model": self.model, "messages": [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}], "stream": True } response = requests.post(endpoint, headers=self.headers, json=payload, stream=True) response.raise_for_status() for line in response.iter_lines(): if line: # 解码二进制数据为字符串 line = line.decode('utf-8') # 跳过空行和心跳检查行 if not line or line == "data: [DONE]": continue # 移除 "data: " 前缀 if line.startswith("data: "): line = line[6:] try: # 解析JSON数据 data = json.loads(line) # 提取content内容 if (data.get("choices") and len(data["choices"]) > 0 and data["choices"][0].get("delta") and data["choices"][0]["delta"].get("content")): content = data["choices"][0]["delta"]["content"] yield content except json.JSONDecodeError as e: self.logger.error(f"解析JSON时出错: {e}, 原始数据: {line}") continue except Exception as e: self.logger.error(f"流式调用DeepSeek API时出错: {e}") raise e def call_model(self, prompt: str, system_prompt: str = None, task_type: str = "未知任务", symbol: str = "未知", temperature: float = 0.2, max_tokens: int = 2000) -> Tuple[Dict[str, Any], Dict[str, Any]]: """ 调用DeepSeek大语言模型 Args: prompt: 用户提示词 system_prompt: 系统提示词,如果为None则使用默认值 task_type: 任务类型,用于记录 symbol: 交易对符号,用于记录 temperature: 采样温度,控制输出随机性 max_tokens: 最大生成token数 Returns: (API响应, token使用信息) """ if system_prompt is None: system_prompt = "你是一个专业的加密货币分析助手,擅长分析市场趋势、预测价格走向和提供交易建议。请始终使用中文回复,并确保输出格式规范的JSON。" usage_info = {} try: endpoint = f"{self.base_url}/chat/completions" payload = { "model": self.model, "messages": [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt} ], "temperature": temperature, "max_tokens": max_tokens } start_time = time.time() response = requests.post(endpoint, headers=self.headers, json=payload) response.raise_for_status() response_data = response.json() end_time = time.time() # 记录token使用情况 if 'usage' in response_data: prompt_tokens = response_data['usage'].get('prompt_tokens', 0) completion_tokens = response_data['usage'].get('completion_tokens', 0) total_tokens = response_data['usage'].get('total_tokens', 0) usage_info = { "prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": total_tokens, "task_type": task_type, "symbol": symbol, "model": self.model, "timestamp": datetime.datetime.now().isoformat(), "duration_seconds": round(end_time - start_time, 2) } # 更新总计 self.token_usage["total_prompt_tokens"] += prompt_tokens self.token_usage["total_completion_tokens"] += completion_tokens self.token_usage["total_tokens"] += total_tokens self.token_usage["calls"].append(usage_info) # 记录到日志 self.logger.info( f"DeepSeek API调用 - 任务: {task_type}, 符号: {symbol}, " f"输入tokens: {prompt_tokens}, 输出tokens: {completion_tokens}, " f"总tokens: {total_tokens}, 耗时: {round(end_time - start_time, 2)}秒" ) return response_data, usage_info except Exception as e: error_msg = f"调用DeepSeek API时出错: {e}" self.logger.error(error_msg) return {}, usage_info def extract_text_from_response(self, response: Dict[str, Any]) -> str: """ 从响应中提取文本数据 """ try: if 'choices' in response and len(response['choices']) > 0: content = response['choices'][0]['message']['content'] # 如果内容以```markdown开头,则去掉``` if content.startswith('```markdown'): content = content[len('```markdown'):] # 如果内容以```结尾,则去掉``` if content.endswith('```'): content = content[:-len('```')] return content else: return {"error": "无法从响应中提取文本", "raw_content": response} except Exception as e: return {"error": str(e), "raw_content": response} def extract_json_from_response(self, response: Dict[str, Any]) -> Dict[str, Any]: """ 从响应中提取JSON数据 Args: response: API响应 Returns: 提取的JSON数据 """ try: if 'choices' in response and len(response['choices']) > 0: content = response['choices'][0]['message']['content'] # 尝试从响应中提取JSON start_idx = content.find('{') end_idx = content.rfind('}') + 1 if start_idx != -1 and end_idx != -1: json_str = content[start_idx:end_idx] return json.loads(json_str) return {"error": "无法从响应中提取JSON", "raw_content": content} return {"error": "API响应格式不正确", "raw_response": response} except Exception as e: error_msg = f"解析响应时出错: {e}" self.logger.error(error_msg) return {"error": str(e), "raw_response": response} def get_token_usage_stats(self) -> Dict[str, Any]: """ 获取Token使用统计信息 Returns: 包含使用统计的字典 """ return { "total_prompt_tokens": self.token_usage["total_prompt_tokens"], "total_completion_tokens": self.token_usage["total_completion_tokens"], "total_tokens": self.token_usage["total_tokens"], "total_calls": len(self.token_usage["calls"]), "average_tokens_per_call": self.token_usage["total_tokens"] / len(self.token_usage["calls"]) if self.token_usage["calls"] else 0, "detailed_calls": self.token_usage["calls"][-10:] # 仅返回最近10次调用详情 } def export_token_usage(self, file_path: str = None, format: str = "json") -> str: """ 导出Token使用数据到文件 Args: file_path: 文件路径,如果为None则自动生成 format: 导出格式,支持'json'或'csv' Returns: 导出文件的路径 """ if file_path is None: timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") file_path = f"deepseek_token_usage_{timestamp}.{format}" try: if format.lower() == "json": with open(file_path, 'w', encoding='utf-8') as f: json.dump(self.token_usage, f, indent=2, ensure_ascii=False) elif format.lower() == "csv": import csv with open(file_path, 'w', newline='', encoding='utf-8') as f: writer = csv.writer(f) # 写入表头 writer.writerow([ "timestamp", "task_type", "symbol", "model", "prompt_tokens", "completion_tokens", "total_tokens", "duration_seconds" ]) # 写入数据 for call in self.token_usage["calls"]: writer.writerow([ call.get("timestamp", ""), call.get("task_type", ""), call.get("symbol", ""), call.get("model", ""), call.get("prompt_tokens", 0), call.get("completion_tokens", 0), call.get("total_tokens", 0), call.get("duration_seconds", 0) ]) # 写入总计 writer.writerow([]) writer.writerow([ f"总计 (调用次数: {len(self.token_usage['calls'])})", "", "", "", self.token_usage["total_prompt_tokens"], self.token_usage["total_completion_tokens"], self.token_usage["total_tokens"], "" ]) else: raise ValueError(f"不支持的格式: {format},仅支持 'json' 或 'csv'") self.logger.info(f"Token使用数据已导出到: {file_path}") return file_path except Exception as e: error_msg = f"导出Token使用数据时出错: {e}" self.logger.error(error_msg) return ""